

Accuracy and Precision of High-Speed Field Measurements of Pavement Surface Rutting and Cracking

Pedro A. Serigos, MSE, MSStat - *serigosp@utexas.edu* Jorge A. Prozzi, PhD Andre de Fortier Smit, PhD Mike R. Murphy, PhD

Introduction

- Transportation agencies use, or are transitioning to, 3D automated distress measurement systems
- Accuracy of the automated measurements is the biggest challenge faced by developers of these systems
- Agencies have to choose between prompt delivery and enhanced accuracy
- Errors in distress data can lead to increased maintenance costs and inappropriate project prioritization

Objective

Independent evaluation of the accuracy and precision of high-speed measurements of rutting and cracking in Texas highways accounting for:

- Pavement Surface Type (HMA, Surface Treatment, JCP, CRCP)
- Distress Type and Extension (rut depth, Crack type and width)
- Surface Macro-Texture (MPD)
- Level of Manual intervention (automated vs corrected)
- Phase 1: Evaluation of Rutting Measurements
- Phase 2: Evaluation of Cracking Measurements

Phase 1 - Experimental Design

- Twenty-four 550-ft long highway sections:
 - Different rut severity levels and representative of Texas highways
 - RD every 5-ft, both WP (5,328 meas) + Profiles every 25-ft (552 tr prof)

Collection of Reference Transverse Profiles

Leica Laser System transverse profile measurements 27 points per profile – total width 150"

Level aluminum beam provided reference plane 23 profiles per test section - 552 profiles total

Collection of Reference Transverse Profiles

Automated Survey of Rutting

Comparison of Transverse Profiles

Comparison of Rut Depth Values

	Accuracy (1/16 in.)	Precision (1/16 in.)	$\beta_{\rm RD} = \Delta {\rm RD}_{\rm error} / \Delta {\rm RD}$
CAS 1	-0.83	3.14	0.10
CAS 2	-0.87	2.52	0.15
CAS 3	-0.99	2.67	0.09
CAS 4	-2.45	5.22	0.58
CAS 5	-3.10	4.37	0.46

Phase 2 - Experimental Design

- Twenty 550-ft long highway sections:
 - Divided into eleven 50-ft subsections (220 total)
 - LTPP protocols

Туре	e of Pavement	Number of Sections		
Flovible	HMA	7		
FIEXIDIE	Surface Treatments	8		
Digid	JCP	2		
Rigiu	CRCP	3		
Total		20		

Manual Distresses Surveys

- Experienced LTPP Raters
 - Distresses summarized every 50 ft

Reference Crack Maps

- Three crack width categories:
 - < 3 mm (red) / 3 mm 6 mm (blue) / > 6 mm (green)

Manual Crack Map

Automated Survey of Distresses

Comparative Analysis

• Summary Statistics of Cracking Measurements

False Positives and Missed Cracks

	System	False Positives			Missed Cracks		
Cracking Type		Before	After	B&A effect	Before	After	B&A effect
		# (%)	# (%)		# (%)	# (%)	
	INO LCMS 1	23 (26%) **	20 (23%) **	not sig.	40 (52%) **	44 (57%) *	not sig.
Fatigue	INO LCMS 2	33 (38%) *	34 (39%) *	not sig.	36 (47%) **	25 (32%) ***	12-01
	PaveVision	12 (14%) ***	12 (14%) ***	-	36 (47%) **	36 (47%) **	-
	INO LCMS 1	81 (74%) **	45 (41%) ***	49-13	22 (20%) **	37 (34%) **	<u>17-32</u>
Longit.	INO LCMS 2	83 (75%) **	69 (63%) **	18-04	08 (07%) ***	07 (06%) ***	not sig.
	PaveVision	64 (58%) ***	64 (58%) **	-	41 (37%) *	41 (37%) **	-
	INO LCMS 1	90 (63%) **	11 (08%) ***	81-02	17 (22%) **	18 (24%) *	not sig.
Transv.	INO LCMS 2	97 (67%) **	79 (55%) *	18-00	04 (05%) ***	03 (04%) ***	not sig.
	PaveVision	27 (19%) ***	27 (19%) **	-	11 (14%) **	11 (14%) **	-
Notes:	*** highest ranked; ** middle ranked; and * lowest ranked						
	underlined cells i	indicate statistical	ly significant wor	sened effect			

Comparative Analysis

• Summary Statistics of Cracking Measurements

Quantification of Measurement Errors

	System	Quantification Errors						
Crack Type		Before			After			B&A offect
		avg	sd	med	avg	sd	med	enect
Fatigue	INO LCMS 1	-11.76 m ² **	9.34 m ²	-80%	0.69 m ² ***	16.49 m ²	07%	improved
	INO LCMS 2	-6.56 m ² ***	11.31 m ²	-56%	2.32 m ² ***	10.92 m ²	33%	improved
	PaveVision	-13.88 m ² *	8.62 m ²	-92%	-13.88 m ² *	8.62 m ²	-92%	-
Longit.	INO LCMS 1	1.09 m ***	9.86 m	13%	4.1 m ***	11.95 m	17%	not sig.
	INO LCMS 2	4.41 m **	10.70 m	57%	1.51 m ***	8.51 m	11%	improved
	PaveVision	7.24 m **	23.73 m	09%	7.24 m *	23.73 m	09%	-
Transv.	INO LCMS 1	-15.54 m *	23.75 m	-44%	-1.24 m ***	13.08 m	01%	improved
	INO LCMS 2	-8.36 m ***	17.41 m	-30%	-3.55 m **	13.39 m	-11%	improved
	PaveVision	-12.79 m **	15.94 m	-54%	-12.79 m *	15.94 m	-54%	-
Notes	• *** highest ranked: ** middle ranked: and * lowest ranked							

Phase 1 - Conclusions

- Transverse Profiles (hardware capabilities)
 - All five systems tested were capable of capturing surface transverse profiles with the necessary accuracy
- Rut Depth values (both hardware and software capabilities)
 - Three of four systems (INO LRMS sensors attached to the survey vehicle) produced similar RD values to the manually measured ones for all practical purposes
 - All showed a high dispersion of their measurements errors
 - Data processing algorithms can be further improve to improve accuracy and precision for roadways in Texas.
- Impact on TxDOT Pavement Management System Scores
 - Moving from a 5-point system to a continuous system will result in improved accuracy and higher levels of rutting (Condition Score dropped significantly, approx. 19 points)

Phase 2 – Conclusions (1/2)

- Accuracy Before Manual Post-Processing :
 - Both systems using INO LCMS sensors performed similarly. They tended to overestimate the number of sections with cracking
 - Although PaveVision system slightly outperformed the other two for some error types, all systems showed poor overall accuracy and precision, which highlights the importance of manual intervention
 - None of the systems outperformed the others on the quantification of cracking for all cracking types. All of them largely underestimated fatigue and transverse cracking, and overestimated long cracking

Phase 2 – Conclusions (2/2)

- Effect of Manual Post-Processing:
 - Both INO LCMS systems significantly improved their accuracy after manual intervention for most cracking types
 - However, the amount of reported false positives was still large (>30%) for several combination of vendors and crack types
 - Manual corrections were more effective at removing cracks incorrectly detected than at adding cracks missed by their algorithm
 - None of the vendors' measurement precision improved after applying manual post-processing
 - Several types of distresses, such as patching, punchouts, spalling, and joint damage, were reported only after manual post-processing of the crack maps

Thanks for your attention

Extra Slides

Laser distancemeter – DISTO D8

Leica System – Data collection on section 23

Phase 2 - Automated Surveys

- Data delivery time-frames analyzed in this study:
 - Before manual post-processing,
 - for data delivered within 2 business days
 - Faster results without manually correct the results produced by their system's algorithms.
 - After manual post-processing,
 - for data delivered within 4 weeks.
 - Detailed manual inspection and corrections of their algorithm's results, producing their most accurate results.

PaveVision

INO LCMS 1 (before)

INO LCMS 1 (after)

INO LCMS 2 (before)

INO LCMS 2 (after)

PaveVision

INO LCMS 1 (before)

INO LCMS 1 (after)

INO LCMS 2 (before)

INO LCMS 2 (after)

Crack Maps Gral Observations

- The number of missed cracks was larger for the cracks < 3 mm wide
- The system using PaveVision sensor did not misidentified transverse and longitudinal joints as cracks whereas the other two did
- None of the systems presented large amount of false positives on PFC surface
- None of the systems was able to capture the very fine cracks on Jointed Concrete Pavement sections
- Significant improvement after manual intervention for both INO LCMS systems